

## APPENDIX A

### A.1 | Proof of Lemma 1

In  $t_2$ , firm  $i$ 's customers discover that they value the advanced version, from which they derive utility  $U$ . Depending on  $p_{ai}$ , they might buy the advanced version or the basic version offered by firm  $i$  (they cannot switch to firm  $j$  for the advanced version because of high switching costs). In  $t_2$ , firms take the price and demand of the basic version as given.  $x_b$  identifies the location of the farthest customer on the segment that has acquired the basic version from firm  $i$ . The highest  $p_{ai}$ , such that all captive customers of firm  $i$  buy the advanced version, is  $p_{ai}^* = p_{bi} + \Delta$ , where  $\Delta = (U - u) - x_b(T_a - T_b)$ . It is not profitable for firm  $i$  to set a price for the advanced version that is below  $p_{ai}^*$  since demand does not change. Conversely, we can now show that any price above  $p_{ai}^*$  does not maximize profits. Suppose that the optimal price for the advanced version is  $\hat{p}_{ai} > p_{bi} + \Delta$ . A customer who is indifferent with respect to buying the advanced version or buying the basic version is then defined by  $\frac{(U - u) - (p_{ai} - p_{bi})}{T_a - T_b} < x_b$ . In this case, firm  $i$  chooses  $p_{ai}$  to maximize:

$$\frac{(U - u) - (p_{ai} - p_{bi})}{T_a - T_b} (p_{ai} - c) + \left[ x_b - \frac{(U - u) - (p_{ai} - p_{bi})}{T_a - T_b} \right] p_{bi}.$$

After taking the first-order condition,  $\hat{p}_{ai} = p_{bi} + \frac{(U - u) - c}{2}$ . Note that  $p_{ai}^* > \hat{p}_{ai}$  if  $(U - u) - c \geq 2x_b(T_a - T_b)$ . This latter condition is always verified in a symmetric equilibrium as long as  $U - u - c \geq (T_a - T_b)$ . Indeed, in a symmetric equilibrium, firms evenly split their market share, implying that  $x_b$  cannot be larger than  $\frac{1}{2}$ .

### A.2 | Proof of Lemma 2

Forward-looking customers anticipate that they will value the advanced version in  $t_2$  and will have to pay the corresponding price. Thus, in  $t_1$  their choice between firm  $i$  and firm  $j$  fully accounts for what will happen in  $t_2$ . The indifferent customer ( $x_b$ ) in  $t_1$  solves the following equation:

$$(u - p_{bi} - x_b T_b) + (U - p_{bi} - (U - u) + x_b(T_a - T_b) - x_b T_a) = \\ (u - p_{bj} - (1 - x_b) T_b) + (U - p_{bj} - (U - u) + (1 - x_b)(T_a - T_b) - (1 - x_b) T_a).$$

After some simplifications, we obtain the following:  $x_b = \frac{1}{2} + \frac{p_{bj} - p_{bi}}{2T_b}$ , which corresponds to firm  $i$ 's demand and market share of the basic version. Note that  $x_b = \frac{1}{2} + \frac{p_{bj} - p_{bi}}{2T_b}$  is also the indifferent customer of the static game of the first period or, equivalently, the indifferent customer when customers are completely myopic and make consumption decisions according to their period by period utility. The latter result follows from the fact that, with high customer switching costs, the optimal price in the second period makes the marginal customer indifferent between buying the basic version and buying the advanced version.

We can now write the profit function of a generic firm  $i$  as

$$\pi_i = x_b p_{bi} + x_b (p_{ai}^* - c)$$

where  $p_{ai}^* = p_{bi} + \Delta$ ;  $\Delta = (U - u) - x_b(T_a - T_b)$  and  $x_b = \left( \frac{1}{2} + \frac{p_{bj} - p_{bi}}{2T_b} \right)$ .

Taking the first-order conditions and simplifying (after imposing symmetry), we obtain an equilibrium price for the basic version:

$$p_b^* = T_b - \frac{[(U-u)-c-(T_a-T_b)]}{2}.$$

Because of symmetry, the demand for each firm in  $t_1$  is

$$x_b^* = 1 - x_b^* = \frac{1}{2}.$$

The price of the advanced version then can be obtained by substitution.

### A.3 | Proof of Proposition 1a

First,  $p_b^*(\text{nsc}) = T_b > p_b^*(\text{sc}) = T_b - \frac{(U-u)-c-(T_a-T_b)}{2}$ . Second, with simple algebra, one can show that  $p_a^*(\text{nsc}) = T_a + c \leq p_a^*(\text{sc}) = T_b + \frac{[(U-u)+c]}{2}$  if  $U-u-c \geq 2(T_a-T_b)$ .

### A.4 | Proof of Proposition 1b

Let  $p_{\text{avg}}$  denote the average market price in  $t_2$ . With switching costs,  $p_{\text{avg}}(\text{sc}) = 2T_b + \frac{(T_a-T_b)}{2} + c$ ; without switching costs,  $p_{\text{avg}}(\text{nsc}) = T_b + T_a + c$ . Thus,  $p_{\text{avg}}(\text{nsc}) - p_{\text{avg}}(\text{sc}) = \frac{(T_a-T_b)}{2}$ . It is easy to see that  $p_{\text{avg}}(\text{nsc}) - p_{\text{avg}}(\text{sc}) > 0$  if  $T_a > T_b$ . Notice also that  $\frac{\partial(p_{\text{avg}}(\text{nsc}) - p_{\text{avg}}(\text{sc}))}{\partial T_a} > 0$ , such that the effect in Proposition 1b grows larger as the advanced version market becomes more (horizontally) differentiated.

### A.5 | Proof of Lemma 3

For simplicity of exposition, we analyze the case in which the differentiation parameter is the same for the two versions,  $T_a = T_b = T > 0$  and  $c = 0$ . With some additional algebra, we can show that the results hold when  $T_a > T_b > 0$  and  $c > 0$ . Assume that there exists an equilibrium in which only  $\delta$  customers buy the advanced version in the scenario with high switching costs. Simple calculations using the results in Lemma 2 show that  $p_b^*(\text{sc}) = T - \frac{\delta(U-u)}{2}$  and  $p_a^*(\text{sc}) = T + \frac{(2-\delta)(U-u)}{2}$ . It is easy to check that  $\hat{u} - p_a^*(\text{sc}) < u - p_b^*(\text{sc})$ . Thus,  $1-\delta$  customers do not buy the advanced version. It remains to be shown that  $p_a^*(\text{sc}) = T + \frac{(2-\delta)(U-u)}{2}$  is the optimal price for the firm in  $t_2$ . The firm could lower the price of the advanced version to the point at which all customers buy it, thereby increasing demand, though at a reduced price. If this option is preferable, it contradicts the idea that only  $\delta$  customers buy the advanced version, so it cannot be an equilibrium. Let  $\bar{p}_a(\text{sc}) = \hat{u} - u + p_b^*(\text{sc})$ , such that all customers buy the advanced version. The firm chooses  $p_a^*(\text{sc}) = T + \frac{(2-\delta)(U-u)}{2}$  instead of  $\bar{p}_a(\text{sc}) = \hat{u} - u + T - \frac{\delta(U-u)}{2}$  if and only if  $\delta p_a^*(\text{sc}) > \bar{p}_a(\text{sc})$ , which holds if  $\delta \left( T + \frac{(3-\delta)(U-u)}{2} \right) > (\hat{u} - u) + T$ . It is straightforward to see that the inequality is more likely to hold for larger values of  $U$  and  $\delta$  and smaller values of  $\hat{u}$ .

### A.6 | Extension 1: Relatively small switching costs

With sufficiently large switching costs, each firm is a monopolist in the second period, and its price is capped only by the price of its basic version. Here, we explore the case in which switching costs are relatively low before their removal.

Consider a customer who has acquired the basic version from firm  $i$ . If in  $t_2$  such a customer values the advanced version, he/she can buy it from firm  $i$  or from firm  $j$ . In the latter case, the customer will have to pay, in addition to the price, a switching cost,  $s$ . To simplify the algebra we assume that  $s < T_a$ , such that at least some customers' preferences for the underlying characteristics of the advanced version can outweigh the switching costs, and  $c = 0$ . All other assumptions in the baseline model remain unchanged.

We solve the model by backward induction starting from period  $t_2$ . A customer who has bought from firm  $i$  in  $t_1$  will be indifferent between the two firms in the choice of the advanced version if  $U - T_a x_a - p_{ai} = U - T_a (1 - x_a) - p_{aj} - s$ , which implies that  $x_a = \frac{1}{2} + \frac{p_{aj} - p_{ai} + s}{2T_a}$ . Instead, for customers who bought from firm  $j$ , the indifferent customer is  $x'_a = \frac{1}{2} + \frac{p_{aj} - p_{ai} - s}{2T_a}$ .

For small switching costs, finding equilibria in a model in which preferences across periods remain fixed becomes cumbersome. Indeed, profit functions are discontinuous around the location of the indifferent customer. Thus we focus on the more tractable case in which preferences are different and independent across periods.

In  $t_2$ , of all customers who value the advanced version, a share  $(x_b)$  has bought the basic version from firm  $i$ , while another share  $(1 - x_b)$  has bought the basic version from firm  $j$ . Firm  $i$  chooses  $p_{ai}$  to maximize  $x_b \left( \frac{1}{2} + \frac{p_{aj} - p_{ai} + s}{2T_a} \right) p_{ai} + (1 - x_b) \left( \frac{1}{2} + \frac{p_{aj} - p_{ai} - s}{2T_a} \right) p_{ai}$ . Firm  $j$  chooses  $p_{aj}$  to maximize  $x_b \left( \frac{1}{2} + \frac{p_{ai} - p_{aj} - s}{2T_a} \right) p_{aj} + (1 - x_b) \left( \frac{1}{2} + \frac{p_{ai} - p_{aj} + s}{2T_a} \right) p_{aj}$ . Solving the system obtained from the first-order conditions gives  $p_{ai} = T_a + \frac{(2x_b - 1)s}{3}$  and  $p_{aj} = T_a - \frac{(2x_b - 1)s}{3}$ .

In  $t_1$ , the indifferent customer anticipates what happens when he/she values the advanced version in  $t_2$ . The probability that a customer who has bought from firm  $i$  will still buy from firm  $i$  is given by  $\frac{1}{2} + \frac{p_{aj}^* - p_{ai}^* + s}{2T_a} = \frac{1}{2} + \frac{5 - 4x_b}{6T_a}s$ , while the probability that the customer will buy from  $j$  is  $\frac{1}{2} - \frac{5 - 4x_b}{6T_a}s$ . The probability that a customer who has bought from firm  $j$  will buy from firm  $i$  is given by  $\frac{1}{2} + \frac{p_{aj}^* - p_{ai}^* - s}{2T_a} = \frac{1}{2} + \frac{-1 - 4x_b}{6T_a}s$ , while the probability that the customer will still buy from firm  $j$  is  $\frac{1}{2} + \frac{1 + 4x_b}{6T_a}s$ . So, the indifferent customer in period  $t_1$  solves the following equation:

$$(u - p_{bi} - x_b T_b) + \left( \frac{1}{2} + \frac{5 - 4x_b}{6T_a}s \right) \left( U - T_a - \frac{(2x_b - 1)s}{3} - \frac{1}{2} \left( \frac{1}{2} + \frac{5 - 4x_b}{6T_a}s \right) T_a \right) + \left( \frac{1}{2} - \frac{5 - 4x_b}{6T_a}s \right) \left( U - T_a + \frac{(2x_b - 1)s}{3} - \frac{1}{2} \left( \frac{1}{2} - \frac{5 - 4x_b}{6T_a}s \right) T_a - s \right).$$

After some simplifications, we obtain  $x_b = \frac{(T_b + p_{bj} - p_{bi}) + \frac{2s^2}{3T_a}}{\frac{4s^2}{3T_a} + 2T_b}$ . Note that for  $s = 0$ , we go back to the case in which there is no link between periods.

Firm  $i$  chooses  $p_{bi}$  to maximize:  $\pi_i = x_b p_{bi} + \frac{1}{2T_a} \left( T_a + \frac{(2x_b - 1)s}{3} \right)^2$ .

After computing the first-order conditions and imposing symmetry, we obtain the following equilibrium price for the basic version:  $p_{bi} = p_{bj} = T_b - \frac{2s}{3} \left( 1 - \frac{s}{T_a} \right)$ .<sup>15</sup>

The price of the advanced version can then be obtained by substitution. Thus, in a symmetric equilibrium  $p_{ai} = T_a$  and  $p_{aj} = T_a$ . Finally,  $p_{avg} = T_b - \frac{2s}{3} \left( 1 - \frac{s}{T_a} \right) + T_a$

Looking at the average price equation we can draw some conclusions. First, the removal of customer switching costs (i.e.,  $s = 0$ ) always leads to a greater average price. This effect is

<sup>15</sup>We discard intrabrand price effects, which reflects the case in which the value that customers get from the advanced version is sufficiently higher than the value that they obtain from the basic version; specifically,

$(U - u) - \frac{3}{2}(T_a - T_e) > \frac{2s}{3} \left( 1 - \frac{s}{T_a} \right)$ , which, given our assumptions on the parameters, always holds when  $s$  is small enough.

achieved through an increase in the basic version price while the advanced version price remains unchanged. Second, because  $\frac{\partial(p_{\text{avg}}(\text{nsc}) - p_{\text{avg}}(\text{sc}))}{\partial T_a} = \frac{4s}{3T_a^2} > 0$ , the removal of customer switching costs generates a larger price increase when the advanced version market is more (horizontally) differentiated. Both findings mimic those we derive in the basic model.

### A.7 | Extension 2: Endogenous quality

Consider the following version of the baseline model. In  $t_2$ , before choosing the optimal price for the advanced version, firms simultaneously invest to determine their respective quality of the advanced version. The quality of the advanced version of firm  $i$  is equal to  $U_i = u + A_i$ , where  $u$  is the (exogenous) quality of the basic version, while  $A_i$  is a function of firm  $i$ 's investment. Investment to enhance the quality of the advanced version generates the following cost:  $C(A_i) = \frac{aA_i^2}{2}$ , where  $a > 0$  is a scalar and is assumed to be small enough.<sup>16</sup>

We start first with the investment in quality in the case of high customer switching costs. In this case, customers cannot switch firms for the advanced version. Thus, the price of the advanced version will be the one we have obtained in Lemma 1, that is,  $p_{ai}^* = p_{bi} + A_i - x_b(T_a - T_b)$ . Note that an investment in quality has a positive direct effect on the price of the advanced version. Firm  $i$  chooses  $A_i$  to maximize  $x_b(p_{ai}^* - c) - \frac{aA_i^2}{2}$ . After solving the first order condition, one obtains that  $A_i^* = \frac{x_b}{a}$ .

We can now analyze the price of the basic version. Firms choose the optimal price of the basic version by anticipating their future investment in quality and their optimal choice of the price of the advanced version. In  $t_1$ , firm  $i$  maximizes the following profit function:

$$x_b p_{bi} + x_b (p_{ai}^* - c)$$

where  $p_{ai}^* = p_{bi} + \frac{x_b}{a} - x_b(T_a - T_b)$  and  $x_b = \left(\frac{1}{2} + \frac{p_{bj} - p_{bi}}{2T_b}\right)$ .

Taking the first-order conditions and simplifying (after imposing symmetry), we obtain an equilibrium price for the basic version:

$$p_b^* = T_b - \frac{\left[\frac{1}{a} - (T_a - T_b) - c\right]}{2}.$$

Because of symmetry, the demand for each firm in  $t_1$  is  $x_b^* = 1 - x_b^* = \frac{1}{2}$ . This also implies that the equilibrium level of quality will be  $A_i^* = \frac{1}{2a}$ . Further substitutions show that  $p_{ai}^* = T_b + \frac{c}{2}$  and that the average price is  $2T_b + \frac{T_a - T_b}{2} + c - \frac{1}{2a}$ , which is lower than the average price when the quality of the advanced version is exogenous.

Consider now the case in which customer switching costs are zero. The model must be solved by backward induction. The indifferent customer in the advanced version is  $x_a = \frac{1}{2} + \frac{p_{aj} - p_{ai}}{2T_a} + \frac{A_i - A_j}{2T_a}$ . As expected, the demand of firm  $i$  increases when it offers a higher quality to the customers. Next, we can compute the optimal prices, given qualities. The best response functions of the two firms are:

$$p_{ai}(p_{aj}, A_i, A_j) = \frac{T_a}{2} + \frac{c}{2} + \frac{p_{aj}}{2} + \frac{A_i - A_j}{2}$$

and

---

<sup>16</sup>We assume that  $a < \frac{1}{T_a - T_b + c}$ .

$$p_{aj}(p_{ai}, A_j, A_i) = \frac{T_a}{2} + \frac{c}{2} + \frac{p_{ai}}{2} + \frac{A_j - A_i}{2}.$$

Solving the system, one obtains:  $p_{ai}(A_i, A_j) = c + T_a + \frac{A_i - A_j}{3}$  and  $\pi_{ai}(A_i, A_j) = \frac{1}{18T_a} (3T_a + A_i - A_j)^2$ .

We can now solve for the equilibrium qualities. Firm  $i$  chooses  $A_i$  to maximize  $\pi_{ai}(A_i, A_j) - \frac{aA_i^2}{2}$ . Assuming parameters satisfy the second order conditions, after imposing symmetry, we find that:  $A_i^* = A_j^* = \frac{1}{3a}$ . In turn,  $p_{ai}^* = p_{aj}^* = c + T_a$ . Thus, the equilibrium price does not change. Note that firms invest less in quality in this scenario compared with the high-customer-switching-costs case because in the latter they have captive customers and can appropriate a greater share of the value created by their investments in quality.

To summarize, the removal of customer switching costs generates a greater average price increment when the quality of the advanced version is endogenous vis-à-vis when it is exogenous. Because the investment in quality is lower after the removal of customer switching costs, profits will also experience a greater increment.

## APPENDIX B

TABLE B1 List of countries in this study

| Country        | MNP adoption | Number of competitors |
|----------------|--------------|-----------------------|
| Hong Kong      | 2000Q1       | 6                     |
| Netherlands    | 2000Q1       | 5                     |
| United Kingdom | 2000Q1       | 4                     |
| Switzerland    | 2000Q1       | 3                     |
| Spain          | 2000Q4       | 3                     |
| Norway         | 2001Q2       | 2                     |
| Australia      | 2001Q3       | 4                     |
| Denmark        | 2001Q3       | 4                     |
| Sweden         | 2001Q3       | 3                     |
| Belgium        | 2002Q1       | 3                     |
| Portugal       | 2002Q1       | 3                     |
| Italy          | 2002Q2       | 3                     |
| Germany        | 2002Q4       | 4                     |
| France         | 2003Q2       | 3                     |
| Greece         | 2003Q3       | 4                     |
| Finland        | 2003Q3       | 3                     |
| Ireland        | 2003Q3       | 3                     |
| The U.S.       | 2003Q4       | 18                    |
| Lithuania      | 2004Q1       | 3                     |
| Hungary        | 2004Q2       | 3                     |
| Cyprus         | 2004Q3       | 4                     |
| Austria        | 2004Q4       | 5                     |

TABLE B1 (Continued)

| Country            | MNP adoption | Number of competitors |
|--------------------|--------------|-----------------------|
| Iceland            | 2004Q4       | 2                     |
| Estonia            | 2005Q1       | 3                     |
| Luxembourg         | 2005Q1       | 3                     |
| Malta              | 2005Q3       | 2                     |
| Slovenia           | 2005Q4       | 3                     |
| South Korea        | 2005Q4       | 4                     |
| Czech Republic     | 2006Q1       | 3                     |
| Slovakia           | 2006Q1       | 2                     |
| Poland             | 2006Q1       | 3                     |
| Croatia            | 2006Q1       | 3                     |
| Saudi Arabia       | 2006Q3       | 3                     |
| Oman               | 2006Q3       | 2                     |
| South Africa       | 2006Q4       | 3                     |
| Japan              | 2006Q4       | 4                     |
| Latvia             | 2007Q1       | 4                     |
| Pakistan           | 2007Q1       | 7                     |
| Canada             | 2007Q1       | 11                    |
| Morocco            | 2007Q1       | 3                     |
| New Zealand        | 2007Q2       | 2                     |
| Israel             | 2007Q4       | 4                     |
| Singapore          | 2008Q2       | 4                     |
| Mexico             | 2008Q2       | 4                     |
| Egypt              | 2008Q2       | 3                     |
| Brazil             | 2008Q3       | 9                     |
| Macedonia          | 2008Q3       | 3                     |
| Malaysia           | 2008Q4       | 6                     |
| Bulgaria           | 2008Q4       | 3                     |
| Romania            | 2008Q4       | 5                     |
| Turkey             | 2008Q4       | 3                     |
| Dominican Republic | 2009Q3       | 4                     |
| Ecuador            | 2009Q4       | 3                     |
| Peru               | 2010Q1       | 3                     |
| Jordan             | 2010Q2       | 5                     |
| Thailand           | 2010Q4       | 7                     |
| Albania            | 2010Q4       | 4                     |
| India              | 2011Q1       | 15                    |
| Georgia            | 2011Q1       | 7                     |
| Kenya              | 2011Q2       | 4                     |

TABLE B1 (Continued)

| Country     | MNP adoption | Number of competitors |
|-------------|--------------|-----------------------|
| Colombia    | 2011Q3       | 4                     |
| Ghana       | 2011Q3       | 5                     |
| Bahrain     | 2011Q3       | 3                     |
| Panama      | 2011Q4       | 4                     |
| Vietnam     | 2011Q4       | 7                     |
| Chile       | 2012Q1       | 5                     |
| Belarus     | 2012Q1       | 5                     |
| Moldova     | 2012Q4       | 4                     |
| Nigeria     | 2013Q2       | 8                     |
| Kuwait      | 2013Q2       | 3                     |
| Russia      | 2013Q4       | 11                    |
| UAE         | 2013Q4       | 2                     |
| Azerbaijan  | 2014Q1       | 3                     |
| Armenia     | 2014Q2       | 4                     |
| Honduras    | 2014Q2       | 3                     |
| El Salvador | 2015Q3       | 5                     |
| Kazakhstan  | 2015Q3       | 4                     |
| Senegal     | 2015Q3       | 3                     |
| Maldives    | 2016Q1       | 2                     |
| Iran        | 2016Q3       | 6                     |
| Tanzania    | 2017Q1       | 8                     |

*Note:* The table shows the countries in our sample that implemented MNP up to 2017Q1. Countries in our sample that have not implemented MNP as of 2017Q1 are as follows (competitors averaged for the period of study in parentheses): Afghanistan (5), Algeria (2), Andorra (1), Angola (1), Argentina (4), Bahamas (1), Bangladesh (6), Barbados (2), Belize (1), Benin (4), Bermuda (2), Bolivia (2), Bosnia and Herzegovina (2), Botswana (2), Burkina Faso (2), Burundi (4), Cabo Verde (1), Cambodia (5), Cameroon (2), Central African Republic (3), Chad (2), China (3), Congo (3), Costa Rica (2), Cote d'Ivoire (4), Democratic Republic of Congo (6), Djibouti (1), Equatorial Guinea (1), Ethiopia (1), Faroe Islands (1), Fiji (1), French Polynesia (1), Gabon (3), Greenland (1), Grenada (2), Guatemala (3), Guinea (4), Guinea-Bissau (2), Guyana (1), Haiti (2), Indonesia (7), Iraq (5), Isle of Man (1), Jamaica (2), Kyrgyzstan (6), Laos (3), Lebanon (2), Lesotho (1), Liberia (3), Macao (3), Madagascar (3), Malawi (2), Mali (2), Mauritania (2), Mauritius (2), Micronesia (1), Monaco (1), Montenegro (2), Mozambique (2), Myanmar (1), Namibia (2), Nepal (4), New Caledonia (1), Nicaragua (2), Niger (3), Palestine (1), Papua New Guinea (2), Paraguay (3), Philippines (5), Puerto Rico (6), Rwanda (2), Saint Kitts and Nevis (2), Sao Tome and Principe (1), Serbia (2), Seychelles (2), Sierra Leone (3), Solomon Islands (1), South Sudan (4), Sri Lanka (4), Sudan (2), Suriname (2), Swaziland (1), Syria (2), Tajikistan (5), Timor-Leste (2), Togo (2), Trinidad and Tobago (1), Tunisia (2), Turkmenistan (1), Uganda (5), Ukraine (8), Uruguay (2), Uzbekistan (5), Venezuela (3), Yemen (3), Zambia (3), and Zimbabwe (3).

TABLE B2 Comparison of *ARPU* treated and control groups 8 quarters before and after MNP

| MNP implementation            | <i>ARPU</i><br>(log)<br>control<br>(1) | Obs.<br>control | <i>ARPU</i><br>(log)<br>treated<br>(2) | Obs.<br>treated | Difference<br>(1)–(2) | <i>p</i> -<br>value | Obs.<br>combined |
|-------------------------------|----------------------------------------|-----------------|----------------------------------------|-----------------|-----------------------|---------------------|------------------|
| 8 quarters before             | 2.46                                   | 342             | 2.50                                   | 246             | –0.04                 | .62                 | 588              |
| 7 quarters before             | 2.50                                   | 382             | 2.50                                   | 248             | 0.00                  | .99                 | 630              |
| 6 quarters before             | 2.47                                   | 353             | 2.53                                   | 262             | –0.06                 | .45                 | 615              |
| 5 quarters before             | 2.55                                   | 334             | 2.48                                   | 266             | 0.07                  | .46                 | 600              |
| 4 quarters before             | 2.50                                   | 346             | 2.46                                   | 274             | 0.04                  | .61                 | 620              |
| 3 quarters before             | 2.45                                   | 343             | 2.46                                   | 280             | –0.01                 | .94                 | 623              |
| 2 quarters before             | 2.40                                   | 338             | 2.44                                   | 281             | –0.04                 | .65                 | 619              |
| 1 quarter before              | 2.45                                   | 324             | 2.42                                   | 280             | 0.03                  | .72                 | 604              |
| <i>MNP</i>                    | 2.39                                   | 353             | 2.52                                   | 336             | –0.12                 | .16                 | 689              |
| <i>Implementation Quarter</i> |                                        |                 |                                        |                 |                       |                     |                  |
| 1 quarter after               | 2.34                                   | 331             | 2.52                                   | 330             | –0.18                 | .03                 | 661              |
| 2 quarters after              | 2.37                                   | 308             | 2.51                                   | 327             | –0.14                 | .09                 | 635              |
| 3 quarters after              | 2.28                                   | 294             | 2.52                                   | 321             | –0.24                 | .00                 | 615              |
| 4 quarters after              | 2.36                                   | 278             | 2.53                                   | 320             | –0.17                 | .04                 | 598              |
| 5 quarters after              | 2.30                                   | 299             | 2.54                                   | 318             | –0.24                 | .00                 | 617              |
| 6 quarters after              | 2.23                                   | 291             | 2.52                                   | 316             | –0.28                 | .00                 | 607              |
| 7 quarters after              | 2.32                                   | 253             | 2.53                                   | 304             | –0.21                 | .01                 | 557              |
| 8 quarters after              | 2.29                                   | 267             | 2.53                                   | 304             | –0.24                 | .00                 | 571              |

*Note:* The table shows the *t*-test between control and treated groups that are constructed for Figure 1.

TABLE B3 Results of OLS regressions testing the effects of MNP on firms pricing strategy after introducing MVNO controls

| Variables         | (1)<br>ARPU<br>Prepaid (log) | (2)<br>ARPU<br>Postpaid (log) | (3)<br>ARPU<br>(log) | (4)<br>ARPU<br>Prepaid (log) | (5)<br>ARPU<br>Postpaid (log) | (6)<br>ARPU<br>(log) | (7)<br>ARPU<br>Prepaid (log) | (8)<br>ARPU<br>Postpaid (log) | (9)<br>ARPU<br>(log) |
|-------------------|------------------------------|-------------------------------|----------------------|------------------------------|-------------------------------|----------------------|------------------------------|-------------------------------|----------------------|
| PostMNP           | 0.142 (.004)                 | 0.055 (.189)                  | 0.161<br>(.002)      | 0.140 (.005)                 | 0.055 (.192)                  | 0.160<br>(.002)      | 0.140 (.005)                 | 0.054 (.198)                  | 0.158<br>(.003)      |
| Total MVNOs       | -0.004 (.020)                | 0.000 (.956)                  | 0.000<br>(.959)      | -0.004 (.017)                | 0.000 (.895)                  | 0.000<br>(.856)      | -0.008 (.010)                | -0.001 (.735)                 | -0.001<br>(.506)     |
| Specialized MVNOs |                              |                               |                      |                              |                               |                      |                              |                               |                      |
| Prepaid MVNOs     |                              |                               |                      |                              |                               |                      |                              |                               |                      |
| HHI               | 0.039 (.431)                 | 0.072 (.059)                  | 0.063<br>(.199)      | 0.039 (.425)                 | 0.072 (.059)                  | 0.063<br>(.198)      | 0.039 (.424)                 | 0.072 (.058)                  | 0.063<br>(.197)      |
| GDP               | 0.190 (.000)                 | 0.154 (.000)                  | 0.105<br>(.000)      | 0.191 (.000)                 | 0.155 (.000)                  | 0.109<br>(.000)      | 0.215 (.000)                 | 0.161 (.000)                  | 0.121<br>(.000)      |
| Penetration       | -0.454 (.001)                | -0.051 (.628)                 | -0.528<br>(.000)     | -0.450 (.001)                | -0.052 (.617)                 | -0.532<br>(.000)     | -0.452 (.001)                | -0.056 (.592)                 | -0.540<br>(.000)     |
| Constant          | 2.351 (.000)                 | 3.259 (.000)                  | 3.093<br>(.000)      | 2.349 (.000)                 | 3.258 (.000)                  | 3.090<br>(.000)      | 2.338 (.000)                 | 3.255 (.000)                  | 3.083<br>(.000)      |
| Observations      | 6,542                        | 6,542                         | 6,542                | 6,542                        | 6,542                         | 6,542                | 6,542                        | 6,542                         | 6,542<br>(.000)      |
| R <sup>2</sup>    | .487                         | .528                          | .545                 | .487                         | .528                          | .545                 | .488                         | .528                          | .545                 |
| Number of firms   | 216                          | 216                           | 216                  | 216                          | 216                           | 216                  | 216                          | 216                           | 216                  |
| Firm fixed effect | YES                          | YES                           | YES                  | YES                          | YES                           | YES                  | YES                          | YES                           | YES                  |
| Quarterly time    | YES                          | YES                           | YES                  | YES                          | YES                           | YES                  | YES                          | YES                           | YES                  |
| fixed effects     |                              |                               |                      |                              |                               |                      |                              |                               |                      |

*Note:* The *p*-values are in parentheses. Robust standard errors are clustered by firm and remain consistent with alternative specifications. We construct three measures to account for entry rate of MVNOs. Total MVNOs (*Mean* = 0.178, *SD* = 0.705; *min* = 0, *max* = 13) measures the cumulative number of MVNO entries up to quarter *t* in each country. The variable includes both specialized MVNOs and those that target segments of prepaid and postpaid customers simultaneously. The Specialized MVNOs (*Mean* = 0.028, *SD* = 0.188; *min* = 0, *max* = 4) variable reflects the cumulative number of MVNO entries by operators that target either prepaid or postpaid segments, up to quarter *t* in each country. Finally, Prepaid MVNOs (*Mean* = 0.091, *SD* = 0.434; *min* = 0, *max* = 6) measures the cumulative number of MVNO entries by operators that target only the prepaid segment up to quarter *t* in each country. These measures only account for the number of entries by MVNOs and do not take exits into account.

TABLE B4 Results of OLS regressions showing MNP effect on service quality

| Variables                       | (1)<br><i>Minutes of Use</i> <sup>a</sup> (log) | (2)<br><i>Data Usage</i> <sup>a</sup> (log) | (3)<br><i>CAPEX</i> (log) | (4)<br><i>4G Installed Base</i> |
|---------------------------------|-------------------------------------------------|---------------------------------------------|---------------------------|---------------------------------|
| <i>PostMNP</i>                  | 0.065 (.515)                                    | 1.191 (.442)                                | -0.083 (.195)             | -0.044 (.015)                   |
| <i>Prepaid</i>                  | -0.642 (.000)                                   | 0.277 (.902)                                |                           |                                 |
| <i>PostMNP</i> × <i>Prepaid</i> | -0.038 (.764)                                   | -0.789 (.674)                               |                           |                                 |
| <i>HHI</i>                      | -0.022 (.499)                                   | 0.375 (.136)                                | 0.103 (.016)              | -0.029 (.405)                   |
| <i>GDP</i>                      | 0.105 (.006)                                    | -0.068 (.561)                               | 0.046 (.251)              | 0.036 (.430)                    |
| <i>Penetration</i>              | 0.297 (.008)                                    | 1.666 (.024)                                | 0.390 (.010)              | -0.165 (.078)                   |
| Constant                        | 5.196 (.000)                                    | 2.684 (.013)                                | 16.081 (.000)             | 0.098 (.575)                    |
| Observations                    | 9,762                                           | 2,004                                       | 12,387                    | 2,021                           |
| <i>R</i> <sup>2</sup>           | .228                                            | .870                                        | .098                      | .504                            |
| Number of firms                 | 330                                             | 144                                         | 434                       | 242                             |
| Firm fixed effect               | YES                                             | YES                                         | YES                       | YES                             |
| Quarterly time fixed effects    | YES                                             | YES                                         | YES                       | YES                             |

Note: The *p*-values are in parentheses. Robust standard errors are clustered by firm and remain consistent with alternative specifications. We compute the natural logarithm of *Minutes of Use*, *Data Usage*, and *CAPEX* to reduce their skewness. *Minutes of Use* (Mean = 4.988, *SD* = 0.752; min = 0.693, max = 7.979). *Data Usage* (Mean = 14.45, *SD* = 3.02; min = 1.60, max = 21.91). *CAPEX* (Mean = 16.79, *SD* = 1.95; min = 5.91, max = 22.88). *4G Installed Base* (Mean = 0.20, *SD* = 0.31; min = 0, max = 1). The sample size drops in some models due to missing values.

<sup>a</sup>While we do not have data on the breakdown of *Minutes of Use* by service type, we can estimate it indirectly through the following regression model:  $\text{Minutes of Use}_{it} = \beta_0 + \beta_1 \text{PostMNP}_{it} + \beta_2 \text{Prepaid}_{it} + \beta_3 \text{Prepaid}_{it} \times \text{PostMNP}_{it} + \bar{\theta} \text{Controls}_{it} + \epsilon_{it}$ . The goal of this regression is to use the variation in prepaid share over time to estimate the average minutes provided in a prepaid plan (i.e., our measure of quality). This variable is captured by the parameter  $\beta_2$ , which measures the difference in *Minutes of use* between prepaid and postpaid services. Eventually, we can estimate whether MNP has an impact on the prepaid plan's *Minutes of Use* using the parameter  $\beta_3$ . We follow a similar approach to estimate the effect of MNP on prepaid plan's *Data Usage*.

TABLE B5 Results of OLS regressions showing MNP effect on different country-level variables

| Variables                    | (1)<br><i>HHI</i> | (2)<br><i>Number of firms</i> |
|------------------------------|-------------------|-------------------------------|
| <i>PostMNP</i>               | 0.270 (.108)      | -0.039 (.802)                 |
| Constant                     | 6.506 (.000)      | 2.125 (.000)                  |
| Observations                 | 10,045            | 10,045                        |
| <i>R</i> <sup>2</sup>        | .327              | .134                          |
| Number of countries          | 178               | 178                           |
| Country fixed effect         | YES               | YES                           |
| Quarterly time fixed effects | YES               | YES                           |

Note: The *p*-values are in parentheses. Robust standard errors are clustered by country. The unit of analysis is country-quarter. *Number of firms* (Mean = 2.686, *SD* = 1.846; min = 1, max = 17) refers to the number of firms in each country in a given quarter.

TABLE B6 Results of OLS regressions showing the importance of conversion funnel business model

| Variables                                 | (1)<br>ARPU(log) | (2)<br>ARPU(log) |
|-------------------------------------------|------------------|------------------|
| <i>PostMNP</i>                            | 0.016 (.856)     | 0.029 (.734)     |
| <i>PostMNP</i> $\times$ <i>All Funnel</i> | 0.198 (.035)     | 0.193 (.039)     |
| <i>All Funnel</i>                         |                  | 0.344 (.000)     |
| <i>HHI</i>                                | 0.047 (.007)     | 0.048 (.004)     |
| <i>GDP</i>                                | 0.103 (.000)     | 0.113 (.000)     |
| <i>Penetration</i>                        | -0.177 (.048)    | -0.134 (.124)    |
| Constant                                  | 2.813 (.000)     | 2.541 (.000)     |
| Observations                              | 26,976           | 26,976           |
| <i>R</i> <sup>2</sup>                     | .428             |                  |
| Number of firms                           | 563              | 563              |
| Firm fixed effect                         | YES              | —                |
| Firm random effect                        | —                | YES              |
| Quarterly time fixed effects              | YES              | YES              |

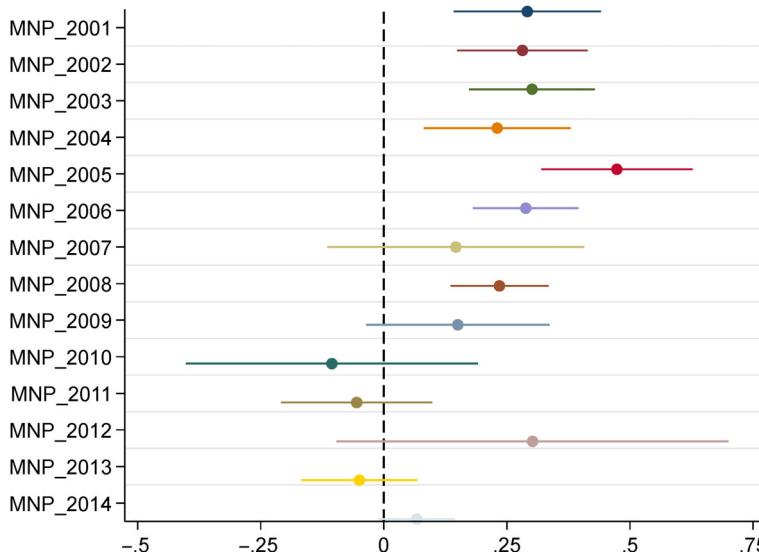

Note: The *p*-values are in parentheses. Robust standard errors are clustered by firm and remain consistent with alternative specifications. *All Funnel* (Mean = 0.63, *SD* = 0.48; min = 0, max = 1) is equal to 1 if all firms in a given country in the pre-MNP period provide both prepaid and postpaid services simultaneously and equal to 0 otherwise.

TABLE B7 Event-study difference-in-differences

| Variables                 | (1)<br>ARPU(log) | (2)<br>ARPU(log) |
|---------------------------|------------------|------------------|
| <i>PreMNP</i> (-3 years)  | 0.009 (.458)     | -0.002 (.904)    |
| <i>PreMNP</i> (-2 years)  | -0.006 (.497)    | 0.003 (.758)     |
| <i>MNP Year</i>           | 0.044 (.000)     | 0.089 (.000)     |
| <i>PostMNP</i> (+1 year)  | 0.058 (.025)     | 0.123 (.000)     |
| <i>PostMNP</i> (+2 years) | 0.136 (.000)     | 0.223 (.000)     |
| <i>PostMNP</i> (+3 years) | 0.148 (.000)     | 0.259 (.000)     |
| <i>PostMNP</i> (+4 years) | 0.178 (.000)     | 0.316 (.000)     |
| <i>HHI</i>                | 0.015 (.642)     | 0.027 (.334)     |
| <i>GDP</i>                | 0.017 (.436)     | 0.048 (.000)     |
| <i>Penetration</i>        | -0.696 (.000)    | -0.539 (.000)    |
| Constant                  | 3.078 (.000)     | 3.025 (.000)     |
| Observations              | 8,504            | 8,504            |
| <i>R</i> <sup>2</sup>     | .231             |                  |
| Number of firms           | 331              | 331              |
| Firm fixed effect         | YES              | —                |
| Firm random effect        | —                | YES              |
| Year fixed effects        | YES              | YES              |

Note: The *p*-values are in parentheses. Robust standard errors are clustered by firm. Firms located in countries that never implemented MNP are not included in this analysis.

TABLE B8 MNP coefficient estimates for different cohorts



Note: The graph shows the cohort-specific point estimates (circle markers) and the intervals (colored bars) for MNP coefficients. The coefficients show the effects of MNP on  $ARPU(\log)$  separately for each cohort between 2001–2014. Because there is no variation in treatment timing (MNP implementation) within each separate regression, this setup should avoid any bias affecting staggered difference-in-differences estimation.

TABLE B9 Stacked OLS regression

| Variables                         | (1)<br>$ARPU(\log)$ |
|-----------------------------------|---------------------|
| <i>PreMNP</i> (-3 years)          | -0.017 (.024)       |
| <i>PreMNP</i> (-2 years)          | -0.023 (.009)       |
| <i>MNP year</i>                   | 0.033 (.015)        |
| <i>PostMNP</i> (+1 year)          | 0.041 (.254)        |
| <i>PostMNP</i> (+2 years)         | 0.071 (.026)        |
| <i>PostMNP</i> (+3 years)         | 0.093 (.001)        |
| <i>PostMNP</i> (+4 years)         | 0.102 (.000)        |
| <i>HHI</i>                        | 0.002 (.945)        |
| <i>GDP</i>                        | 0.008 (.821)        |
| <i>Penetration</i>                | -0.575 (.000)       |
| Constant                          | 4.117 (.000)        |
| Observations                      | 7,348               |
| <i>R</i> <sup>2</sup>             | .975                |
| Cohort-specific firm fixed effect | YES                 |
| Cohort-specific year fixed effect | YES                 |

Note: The *p*-values are in parentheses. Robust standard errors are clustered by firm. The table shows event-study difference-in-differences estimates with unit and time fixed effects saturated with indicators for the specific stacked dataset.